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Abstract: Traditionally, similarity between two objects is calculated by using only their
attribute values, such as number of coincided attributes, Euclid distance, etc. A new concept of
similarity dealing with a uniqueness measure is proposed in this paper by which the similarity
between two objects is not only considered using their attribute values, but also a subset of
objects as an important parameter. Here, the subset of objects may be regarded as knowledge
of human. In this concept of similarity, if attribute values of two objects are rare in the
subset, and their attribute values are the same, then their degree of similarity is high. On
the other hand, if the attribute values of two objects are not rare in the subset, and their
attribute values are the same, then their degree of similarity is low. Consequently, the degree of
similarity between two objects will be changed depending on the subset of objects. Moreover, we
discuss mathematical properties of the concept of similarity dealing with uniqueness measure.
Finally, we discuss differences between the concept of similarity based on uniqueness measure
and traditional similarity using some examples.
Keywords: Similarity relation, Probability, Uniqueness measure

1 Introduction

In traditional concepts of similarity, degree of sim-
ilarity between two objects is calculated by using
only attribute values of the objects, such as us-
ing number of coincided attributes, Euclid distance,
etc. Others may also consider the similarity using
weights of attributes to emphasize how important
an attribute in determining the similarity of objects
(see [7]). In [7], similarity is calculated by using in-
formation quantities of attribute values as weights
of attributes.

In [4, 2], we discussed and proposed a new con-
cept of similarity dealing with uniqueness measure.
Simply, similarity between two objects is obtained
by observing their attribute values of two objects
and a subset of objects in which the objects belong
to the subset. Here, we may consider the subset
of objects as knowledge of human. In the concept
of similarity, if attribute values of two objects are
rare in the subset, and their attribute values are the
same, then their degree of similarity will be high.
On the other hand, if attribute values of two ob-
jects are not rare in the subset of objects, and their
attribute values are the same, then their degree of
similarity will be low. Consequently, the degree of
similarity between two objects will be changed de-
pending of the subset of objects. We consider this
phenomenon by defining what we call it as unique-
ness measure. Therefore, extending [4], our pri-
mary goal in this paper is to discuss mathematical
properties of the concept of similarity which is deal-

ing with the uniqueness measure. Especially, we
also discuss and consider differences between the
concept of similarity and the traditional concepts
of similarity.

2 Human’s Perception

The concept of uniqueness based similarity that we
proposed is based on human’s perception. In this
section, first, we show an illustrative example and
figures, and discuss how human’s perception works
in a process of recognition. Then, based on the
human’s perception, we propose a new concept of
similarity.

2.1 Monkey vs. Human

Let us suppose that there are two photographs, a
photograph of two different monkeys and a photo-
graph of two different humans. As human, obvi-
ously we cannot recognize differences between two
monkeys in the photograph well, but we can recog-
nize differences between two humans in their pho-
tograph (if they are not identical twin). This is be-
cause we have much knowledge related to humans
by having many opportunities (experiences) to see
them, but we have few knowledge related to the
monkeys. Hence, it can be said that it is difficult
for a human to recognize a monkey as a particular
monkey compared with another monkey, because of
our limited knowledge about the monkey. In other
words, we do not know any important features of
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a monkey to be recognized. It could be said that
it may be difficult for monkeys to recognize a hu-
man as a particular human compared to the other
human. In our point of view, there are existences
of individual knowledge for both humans and mon-
keys representing in their features.

2.2 Human and Their Features

When a picture of two men (Fig.1) and another
one of these men with a mustache (Fig.2) are com-
pared, we may consider two cases. The first case
is when a Japanese looks at those pictures and the
second case is when an Arab looks at the pictures.
In the first case, generally, Japanese could under-
stand some important features needed to recognize
men without a mustache. So it is easy for Japanese
to distinguish men without a mustache. Further-
more, in many cases, Japanese have a rare oppor-
tunity to see men with a mustache, so they tend
to have a strong impression for a mustached im-
age. Consequently, their attention will gather for
the mustache. As a result, men with a mustache
gradually become more similar for Japanese than
men without a mustache.

Figure 1: the case of having no mustache

Figure 2: the case of having a mustache

Next, we consider the case when Arabs look at
the pictures. Since Arabs have plenty of knowledge
related to men with a mustache, they could eas-
ily recognize men with a mustache without being
confused by the mustache.

2.3 Summary of Discussion

From the discussion above, it can be summarized
that human can recognize anything if he has a
certain knowledge or experience about it, where

knowledge plays important role in human’s percep-
tion. The knowledge here is constituted based on
subjectivity for every human, and the subjectivity
is made from what has been experienced until now.
When an element and their combination are unique
in knowledge, human has a tendency to react to a
new thing sensitively. For instance, it is applied to
the features such as, the monkeys are covered with
hair, the humans have a mustache, etc. Therefore,
in this paper, we propose a new concept of simi-
larity based on uniqueness (measure) in which the
concept of similarity is naturally represented in hu-
man’s perception. That is, human will pay much
attention to a rare (unique) case in the whole data.

3 Similarity based on Unique-
ness Measure

This section defines the concept of similarity based
on the uniqueness measure and compares the con-
cept to the traditional one.

First, we need to define a data table called infor-
mation system as usually used in knowledge repre-
sentation. Formally, an information system is de-
fined as follows.

Definition 1 Information system contains data
about objects of interest characterized by some
attributes. An information system is defined as
a quadruple I = (U, A, V, ρ), where U is a non-
empty finite set of objects called the universe, and
A is a non-empty finite set of attributes such that
ρ : (U×aj) → Dj for every aj ∈ A. The set Dj ∈ V
is domain or value set of attribute aj .

Example 1 Given an information system in Table
1 consists of ten objects, {u1, u2, · · · , u10}, and five
attributes, {a1, a2, · · · , a5}. Simplifying the prob-
lem, we consider ρ : (U × aj) → {0, 1}, ∀aj , j =
1, . . . , 5. For example in Table 1, attribute value of
object u3 in attribute a5 is given by ρ(u3, a5) = 1.
Also, attribute value of object u7 in attribute a1 is
given by ρ(u7, a1) = 0.

Table 1: An example of information system.

a1 a2 a3 a4 a5

u1 0 1 0 0 0
u2 1 0 0 1 0
u3 0 1 0 0 1
u4 0 1 0 1 0
u5 1 1 0 0 1
u6 0 1 1 1 1
u7 0 1 1 0 0
u8 0 1 1 1 0
u9 0 0 1 0 0
u10 0 1 1 1 0
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Next, we define a degree of coincidence by com-
paring attribute values between two objects in a
given attribute.

Definition 2 Degree of coincidence between two
objects ui, uj ∈ U in attribute ak ∈ A is denoted
by M(ui, uj , ak), and defined as follows.

M(ui, uj, ak) =
{

1 if ρ(ui, ak) = ρ(uj , ak)
0 if ρ(ui, ak) �= ρ(uj , ak).

(1)

Simply, a traditional concept of similarity may be
defined by using degree of coincidence as the fol-
lowing definition.

Definition 3 Traditional concept of similarity be-
tween two objects ui, uj ∈ U is denoted by
Stra(ui, uj), and defined by:

Stra(ui, uj) =

|A|∑
k=1

M(ui, uj , ak)

|A| , (2)

where ak ∈ A, and |A| is cardinality (number of
elements) of set of attributes A.

The above concept of traditional similarity is ob-
tained by dividing a number of coincided attributes
of two objects by a number of all attributes.

Example 2 Using Definition 3, similarity between
u2 and u5, and similarity between u8 and u10 in
Table 1 are calculated by:

Stra(u2, u5) =
2
5

= 0.4,

Stra(u8, u10) =
5
5

= 1.

Before defining the concept of uniqueness mea-
sure, it is necessary to define probability of a cer-
tain attribute value of an object given a subset of
objects.

Definition 4 Let ui ∈ U is an object, X ⊆ U , and
ak ∈ A is an attribute. P (ui, ak, X) is defined as
probability of attribute value, ρ(ui, ak), in a sample
space X as given by:

P (ui, ak, X) =

∑
uj∈X

M(ui, uj, ak)

|X | . (3)

On the other hand, Definition 4 represents proba-
bility of a number of objects whose attribute values
are the same as attribute value of object ui at an
attribute ak in a number of objects in set X .

Example 3 Let X = {u1, . . . , u5} be a subset of
U . P (u2, a1, U), P (u5, a3, U), P (u2, a1, X) and
P (u5, a3, X) are calculated as follows.

P (u2, a1, U) =
2
10

= 0.2,

P (u5, a3, U) =
5
10

= 0.5,

P (u2, a1, X) =
2
5

= 0.4,

P (u5, a3, X) =
5
5

= 1.

Using the probability of an attribute value in a
given subset of objects as defined in Definition 4,
a concept of uniqueness measure is defined char-
acterized by a function to calculate uniqueness of
relationship between attribute values of two objects
in a certain attribute.

Definition 5 Given X ⊆ U , uniqueness measure
relationship between two objects, ui, uj ∈ U , in
attribute ak ∈ A is characterized by a function
C(ui, uj, ak, X).

C(ui, uj, ak, X)

=




1 − P (ui, ak, X)2

if M(ui, uj , ak) = 1
1 − 2 × P (ui, ak, X)× P (uj , ak, X)

if M(ui, uj , ak) = 0.

(4)

Generally, this function calculates subtraction a
probability which attribute values of two objects
occur at once from one. Since all attribute values
is simplified taking a value from either 0 or 1, occur-
rences of attribute values of two objects are divided
into four cases. They are a case of 0 and 0, a case
of 0 and 1, a case of 1 and 0, and a case of 1 and 1.
The case which attribute values are different is two
case (0 and 1, and 1 and 0). Hence, probability is
twice when M(ui, uj , ak) = 0.

Example 4 We show two examples of a case when
two attribute values are different, C(u2, u5, a2, X),
and a case when two attribute values are the same,
C(u2, u5, a3, X).

Let X = {u1, u2, u3, u4, u5} be a subset of objects.

C(u2, u5, a2, X)
= 1 − 2 × P (u2, a2, X) × P (u5, a2, X),
= 1 − 2 × 0.2 × 0.8,

= 1 − 0.32,

= 0.68.

C(u2, u5, a3, X)
= 1 − P (u2, a3, X)2,
= 1 − 12,

= 0.
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In the second example, attribute values of all
objects in X are all 0’s. Consequently, at-
tribute values in a3 are not rare. Therefore,
C(u2, u5, a3, X) = 0.

Now, using uniqueness measure as defined in Defi-
nition 5, we define a concept of similarity between
two objects as follows.

Definition 6 Degree of similarity between two ob-
jects ui, uj ∈ U for X ⊆ U is calculated by the
following equation.

Suni(ui, uj , X) =

|A|∑
k=1

(C(ui, uj, ak, X) × M(ui, uj, ak))

|A|∑
k=1

C(ui, uj , ak, X)

.

(5)

Example 5 Given the information system in Ta-
ble 1 and let X be {u1, u2, u3, u4, u5}. By using Eq.
5, we calculate degree of similarity between u2 and
u5 as follow.

Suni(u2, u5, U)

=
0.96 + 0.75
0.96 + 0.68 + 0.75 + 0.5 + 0.58

,

=
1.71
3.47

,

= 0.493.

Suni(u2, u5, X)

=
0.84 + 0
0.84 + 0.68 + 0 + 0.52 + 0.52

,

=
0.84
2.56

,

= 0.328.

Similarly, degree of similarity between u8 and u10

is given by:

Suni(u8, u10, U)

=
0.36 + 0.36 + 0.75 + 0.75 + 0.51
0.36 + 0.36 + 0.75 + 0.75 + 0.51

,

=
2.73
2.73

,

= 1.

Suni(u8, u10, X)

=
0.64 + 0.36 + 1 + 0.84 + 0.64
0.64 + 0.36 + 1 + 0.84 + 0.64

,

=
3.48
3.48

,

= 1.

In X, all attribute values of a3 are equal to 0. Con-
sequently, uniqueness of 0 in attribute a3 disap-
peared. Hence, it can be verified that

Suni(u2, u5, U) ≥ Suni(u2, u5, X).
Also, in the case of Suni(u8, u10, U) and
Suni(u8, u10, X), since attribute values of two ob-
jects in all attributes are the same, their similarity
is equal to 1 for any subsets.

In these two cases, when a subset of objects con-
sists of only one object and when all objects in the
subset have exactly the same attribute values for
all attributes, results of calculation by using Eq.5
are equal to 0

0 . Here, we consider 0
0 as 1 in this

research.

4 Mathematical Properties of

Similarity based on Unique-
ness Measure

As a primary goal in this paper, this section dis-
cusses mathematical properties of the concept of
similarity based on the uniqueness measure. There
are several well known mathematical properties of
binary relations such as equivalence relation, fuzzy
similarity relation [8], weak fuzzy similarity rela-
tion [5], resemblance (proximity) relation [1], etc.
Equivalence relation is consider as the strongest bi-
nary relation, and it can be verified that similarity
between crisp data satisfies the equivalence relation
as given by the following definition.

Definition 7 It is called equivalence relation, if bi-
nary relation satisfies the following properties.

Reflexivity:
∀x R(x, x) = 1,

Symmetry:
∀x, y R(x, y) = R(y, x),

Transitivity:
∀x, y, z

R(x, y) = R(y, z) = 1 ⇒ R(x, z) = 1.

Fuzzy similarity relation has a weaker transitive
property than equivalence relation for dealing with
fuzzy data.

Definition 8 It is called fuzzy similarity relation,
if binary relation satisfies the following properties.

Reflexivity:
∀x R(x, x) = 1,

Symmetry:
∀x, y R(x, y) = R(y, x),

Max-min Transitivity:
∀x, y, z

R(x, z) ≥ maxy∈Umin[R(x, y), R(y, z)].

The weak fuzzy similarity relation is proposed
based on conditional probability relation [6]. In
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conditional probability relation, similarity relation-
ship between two data is assumed similar to the re-
lationship between two events in conditional prob-
ability.

Definition 9 It is called weak fuzzy similarity re-
lation, if binary relation satisfies the following prop-
erties.

Reflexivity:
∀x R(x, x) = 1,

Conditional Symmetry:
∀x, y if R(x, y) > 0 then R(y, x) > 0,

Conditional Transitivity:
∀x, y, z

if R(x, y) ≥ R(y, x) > 0 and
R(y, z) ≥ R(z, y) > 0 then R(x, z) ≥ R(z, x).

Definition 10 The binary relation that satisfies
only reflexivity and symmetry properties is called
resemblance (proximity) relation.

Theorem 1 Similarity with uniqueness measure
satisfies resemblance relation.

It can be verified easily.

In order to explore more properties, it is neces-
sary to define number of coincidence attributes.

Definition 11 Number of coincidence attributes
is given by the following equation:

N(ui, uj) =
|A|∑
k=1

M(ui, uj, ak). (6)

Theorem 2 In the concept of traditional similar-
ity, all ui, uj, uk, ul ∈ U satisfy the following prop-
erty.

N(ui, uj) ≤ N(uk, ul)
	 (7)

Stra(ui, uj) ≤ Stra(uk, ul).

However, in the concept of similarity with
uniqueness measure, the property is not always sat-
isfied. That is,

N(ui, uj) ≤ N(uk, ul)
�	 (8)

Suni(ui, uj, X) ≤ Suni(uk, ul, X).

Proof:
In traditional similarity, it is clear to satisfy the

above property from Definition 3.

In the concept of similarity with uniqueness mea-
sure, we show a counter example. Here, we con-
sider about an information system which has four

attributes a1, a2, a3, a4 and a subset X . The infor-
mation system is assumed to have probability value
for attribute values 0 and 1 of all four attributes in
X as shown in Table 2. For instance, a1[0] means
probability of 0 of attribute a1 in subset X .

Table 2: Probabilities of 0 and 1 at 4 attributes

a1[0] a1[1] a2[0] a2[1] a3[0] a3[1] a4[0] a4[1]

0.9 0.1 0.9 0.1 0.1 0.9 0.5 0.5

Table 3: u1, u2, u3, u4

a1 a2 a3 a4

u1 0 0 1 0
u2 0 0 1 1
u3 1 1 0 0
u4 1 1 1 1

Let X = {u1, u2, u3, u4} has attribute values as
given in Table 3. We show similarity of u1 and u2

and similarity of u3 and u4 as follows.

Suni(u1, u2, X)

=
0.19 + 0.19 + 0.19
0.19 + 0.19 + 0.19 + 0.5

,

=
0.57
1.07

,

= 0.532.

Suni(u3, u4, X)

=
0.99 + 0.99
0.99 + 0.99 + 0.82 + 0.5

,

=
1.98
3.3

,

= 0.6.

N(u1, u2) is 3 and N(u3, u4) is 2. However,
Suni(u1, u2, X) is 0.532 and Suni(u3, u4, X) is 0.6.
Q.E.D.

Definition 12 Related to the next theorem, let
u ∈ U has ρ(u, a) for a ∈ A. We define that ∼ u
has 1 − ρ(u, a) for a ∈ A.

Theorem 3 In the concept of traditional similar-
ity, all ui, uj ∈ U satisfy the following property.

Stra(ui, uj) + Stra(ui,∼ uj) = 1. (9)

However, in the concept of similarity with
uniqueness measure, all ui, uj ∈ U do not always
satisfy that Suni(ui, uj, X) + Suni(ui,∼ uj , X) is
equal to 1.
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Proof:
First, we prove that Eq.9 is satisfied in the concept
of traditional similarity

Stra(ui, uj) + Stra(ui,∼ uj)

=

|A|∑
k=1

M(ui, uj, ak)

|A| +

|A|∑
k=1

M(ui,∼ uj, ak)

|A| ,

=

|A|∑
k=1

M(ui, uj, ak)

|A| +

|A|∑
k=1

1 − M(ui, uj, ak)

|A| ,

=

|A|∑
k=1

M(ui, uj, ak) + 1 − M(ui, uj , ak)

|A| ,

=

|A|∑
k=1

1

|A| =
|A|
|A| = 1.

In the concept of similarity with uniqueness mea-
sure, we show a counter example which does not
satisfy

Suni(ui, uj , X) + Suni(ui,∼ uj , X) = 1.

We use the information system in Table 1. Let X =
{u1, u2, u3, u4, u5} be a subset of U . We consider a
similarity of u2 and u5.

Suni(u2, u5, X)

=
0.84 + 0
0.84 + 0.68 + 0 + 0.52 + 0.52

,

=
0.84
2.56

,

= 0.328.

Suni(u2,∼ u5, X)

=
0.96 + 0.84 + 0.64

0.52 + 0.96 + 1 + 0.84 + 0.64
,

=
2.44
3.96

,

= 0.616.

From Suni(u2, u5, X)+Suni(u2,∼ u5, X) = 0.944 �=
1, it can be proved that the concept of similarity
with uniqueness measure does not satisfy

Suni(ui, uj , X) + Suni(ui,∼ uj , X) = 1.

Q.E.D.

Theorem 4 In the concept of traditional similar-
ity, all ui, uj ∈ U satisfy the following property.

Stra(ui, uj) = Stra(∼ ui,∼ uj). (10)

However, in the concept of similarity with
uniqueness measure, Eq.10 is not always satisfied.

Proof:
First, we prove that Eq.10 is satisfied in the concept
of traditional similarity.

Stra(∼ ui,∼ uj)

=

|A|∑
k=1

M(∼ ui,∼ uj , ak)

|A| ,

=

|A|∑
k=1

1 − M(∼ ui, uj, ak)

|A| ,

=

|A|∑
k=1

1 − (1 − M(ui, uj , ak))

|A| ,

=

|A|∑
k=1

M(ui, uj, ak)

|A| ,

= Stra(ui, uj).

In the concept of similarity with uniqueness mea-
sure, we show a counter example which does not
satisfy Eq.10.

Again, we use the information system in Table 1.
Let X = {u1, u2, u3, u4, u5} be a subset of U . We
consider a similarity of u2 and u5.

Suni(u2, u5, X)

=
0.84 + 0
0.84 + 0.68 + 0 + 0.52 + 0.52

,

=
0.84
2.56

,

= 0.328.

Suni(∼ u2,∼ u5, X)

=
0.64 + 1
0.64 + 0.68 + 1 + 0.52 + 0.52

,

=
1.64
3.36

,

= 0.488.

From Suni(u2, u5, X) = 0.328 and Suni(∼ u2,∼
u5, X) = 0.488, it can be proved that the concept of
similarity with uniqueness measure does not satisfy

Suni(ui, uj, X) = Suni(∼ ui,∼ uj, X).

Q.E.D.

Theorem 5 For any subsets, X1, X2 ⊆ U , sim-
ilarities among objects, ui, uj, uk, ul ∈ U , do not
satisfy: Suni(ui, uj , X1) ≤ Suni(uk, ul, X1) if and
only if Suni(ui, uj, X2) ≤ Suni(uk, ul, X2). That is,

Suni(ui, uj, X1) ≤ Suni(uk, ul, X1)
�	

Suni(ui, uj, X2) ≤ Suni(uk, ul, X2).
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Proof:
We show a counter example. We use an information
system in Table 1. Let be X1 = {u1, u2, u3, u4, u5}
and X2 = {u6, u7, u8, u9, u10}. Then,

Suni(u4, u5, X1) = 0.188,

Suni(u1, u6, X1) = 0.329,

Suni(u4, u5, X2) = 0.382,

Suni(u1, u6, X2) = 0.140.

Therefore,

Suni(u4, u5, X1) ≤ Suni(u1, u6, X1),
Suni(u4, u5, X2) ≥ Suni(u1, u6, X2).

We proved that Similarity based on uniqueness
measure does not satisfy that Suni(ui, uj, X1) ≤
Suni(uk, ul, X1) if and only if Suni(ui, uj , X2) ≤
Suni(uk, ul, X2).
Q.E.D.

Example 6 Theorem 5 represents that order of
similarity can be changed. We explain by using the
following example.

We use an information system in Table 1
and let be X = {u1, u2, u3, u4, u5} and U =
{u1, u2, u3, u4, u5, u6, u7, u8, u9, u10}. Then,

Suni(u2, u3, X) = 0,

Suni(u2, u7, X) = 0.190,

Suni(u2, u3, U) = 0.235,

Suni(u2, u7, U) = 0.177,

Suni(u2, u3, X) ≤ Suni(u2, u7, X),
Suni(u2, u3, U) ≥ Suni(u2, u7, U).

In knowledge X, u7 is more similar to u2 than
u3. Also, in knowledge U , u3 is more similar to u2

than u7. In knowledge X and U , order of similarity
is changed.

5 Conclusion

In this paper, first we introduced a new concept of
similarity dealing with uniqueness measure. Then,
we showed mathematical properties of the similar-
ity. Also, we compared the concept of traditional
similarity to the concept of similarity with unique-
ness measure. In the future, we would like to clar-
ify more properties of the concept of similarity with
uniqueness measure, and apply the concept to the
real world application.
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