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Abstract

In fuzzy set, knowledge plays important roles in
determining its membership function. By adding
component of knowledge, this paper generalizes
definition of fuzzy set based on probability theory.
Some basic operations are re-defined. Granularity of
knowledge is given in two frameworks, crisp
granularity and fuzzy granularity. Objectivity and
individuality mea sure are proposed. Special
attention is given to approximate reasoning in
knowledge-based fuzzy sets representing fuzzy
production rules as usually used in fuzzy expert
system.
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1. Introduction

There are at least two types of uncertainty, namely
deterministic  uncertainty called fuzziness and
non-deterministic uncertainty called randomness.

In generd, deterministic uncertainty may happen in
the situation when one is subjectively able to determine
or describe a given object, athough somehow the object
does not have a certain or clear definition. For example,
aman describes a woman as a pretty woman. Obvioudy
definition of a pretty woman is unclear, uncertain and
subjective. The man howewver is convinced of what he
describes as a pretty woman.

On the contrary, in non-deterministic uncertainty, one
cannot determine or describe a given object even though
the object has clear definition because human does not
know what happen in the future and has limited
knowledge. In other words, human is not omniscient
being.

For example, in throwing a dice, even though there
are six definable and certain possibilities of outcome,
one however cannot assure the outcome of dice. Fuzzy
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set theory, proposed by Zadeh in 1965, is not to
represent non deterministic situation of uncertainty such
as randomness or stochastic process, but rather to
represent deterministic uncertainty by a class or classes
which do not possess sharply defined boundaries [11]. In
deterministic uncertainty of fuzzy set, one may
subjectively determine membership function of a given
element by his knowledge. Different persons with
different knowledge may provide different membership
functions for elements in a universe with respect to a
given fuzzy set. In other words, knowledge plays
important roles in determining or defining a fuzzy set.
Based on these reasons, we introduced knowledge-based
representation of fuzzy set (knowledge-based fuzzy set,
for short). Some basic concepts such as equality,
containment, complementation, union and intersection
are redefined [7]. In addition, by fuzzy conditiona
probability relation as proposed in [4,5], granularity of
knowledge is given in two frameworks, crisp granularity
and fuzzy granularity. By assuming each element of
knowledge corresponds to a person and fuzzy set
corresponds to problem or situation, we construct two
asymmetric smilarity classes of knowledge representing
the granularity of knowledge based on the conditional
probability relation. Also, on the assumption that the
more a given description is acceptable by others, the
more objective the description is, we may define
objectivity measure in knowledge-based fuzzy sets. On
the other hand, individuality measure is defined as the
opposite of objectivity measure. Specia attention is
given to approximate reasoning in knowledge-based
fuzzy sets representing fuzzy production rules as usualy
used in fuzzy expert system. It is proved that inference
rules, which are smilar to Armstrong's Axioms [1] for
the fuzzy production rules, are both sound and complete.

2. Knowledge-based Fuzzy Set

Asaquotation from Albert Einstein said “ So far asthe
laws of mathematics refer to redity, they are not certain.
And so far as they are certain, they do not refer to
redlity.”, we actualy live in an uncertain world. At least,
there are two types of uncertainty, namely deterministic
uncertainty and non-deterministic uncertainty. Fuzzy set
theory proposed by Zadeh is considered as an example
of deterministic uncertainty. In deterministic uncertainty
of fuzzy set, one may subjectively determine



membership function of a given element by his
knowledge. Different persons with different knowledge
may provide different membership functions for
elements in a universe with respect to a given fuzzy set.
In other words, knowledge plays important roles in
determining or defining a fuzzy set. In this section, a
knowledge-based fuzzy setsis defined as follows.

Definitionl: Let U :{ul,...,un} be a st of elements
and K ={k,,...k } be a set of knowledge. Then a

fuzzy set A on U based on element of knowledge
k; denoted by k;(A) isdefined a mapping from U to
the closed interval [0,1] which is characterized by a
membership function
m s U ® [0]]

We may then represent a given fuzzy set A on U in
a fuzzy information table as shown in Table 1 in which
K(A) ={k,(A),....k,,(A)} is set of knowledge-based
fuzzy setsof A.

Table 1. Knowledge-based Fuzzy Set of A

ki (A) | Mk, (a) (W) M, (A) (Un)
Km(A Mk, a)(U) - M (a)(Up)

M, (»(U) means membership function of element u,

infuzzy set A based on element of knowledge k;.An
aggregation function [3,9] (f) may be applied in order
to give a summary of al fuzzy sets. Formally,
aggregation function on m fuzzy sets (m3 2) is
defined by
f:[01]"® [04]

When applied to the knowledge-based fuzzy sets as
shown in Table I, function f produces a summary
fuzzy set S(A) by operating on the membership
functions of all knowledge-based fuzzy sets for each
ul U asfollows:

My a) (U) = F (M, () (W), M () (L))

Here, depending on type of application, f might be
defined by minimum, maximum, average, etc, in which
f must satisfy,

MmN Xg,..., Xm) £ T (Xq,00, Xiy) £ MX(Xyg5..0, Xpyy),  fOr
x, 1[04 TN,

By assuming that each elements of knowledge represents
an opinion toward a given fuzzy set, we may need to

consider ather aggregation function such as,
é i aj Xj
f (Xg5ee0s Xm) = —

aja]

be a coefficient corresponding to kj :

T N,

where a,
a,1 R" and x,1 [01]. Larger value of a; denotes

that k; is more prominent in determining the summary

fuzzy set.
There are severa concepts relating to the
knowledge-based fuzzy sets;, for two fuzzy sets,

ABI F(U) onasetof dements U, where F(U) is

fuzzy power setof U and K isaset of knowledge,
Equality:
(e1)

ki(A) =k (B) U m () =m, (g L)," ul U,

@ ) )

A=BU mp(U) =mge)(u),” ul U," kI K,

€3 ) )
A° BU m(i(A)(u):m(j(B)(u)," ul U," ki, k; I K,
(e4)

ki =k,
(€5)

ki ~k; O @ Moy =a ,m )" AT F).
Contai nment:

(c1)

k(A1 k;(B)U M, () (U) =M () (W)," ul U,
(c2)

Al BU myp(u) £mg(u),” ul U," kT K,
(c3)

AEBU M, (U) £ M (g (U)," ul U," k,k T K,
(4 X i

ki <k; U m(i(A)(u)£m(j(A)(u)," ul U," Al FU),
(c5)

ki<kj 0 & ,MqyWEQ M aW." AT FU).
Union:

) my (aeg)(U) =mad m, (p (U),M, @) (W],

(U2) Mg g (U) = max Mg p) (U), M5y (W)].

U3) M (mEk;(B)(U) = max N (a)(U),M, &) (U)],
©4) M ak; (a) () = madmy a) (U):my, (a) (W]

(e}

M (4 (U) =M ) (), ul U," AT F(U),



Table 2. Knowledge-Based Fuzzy Set of Warm

KW) | 20°c | 22°C|24°C|26°C | 28°C [30°C | 32°C|34°C | 36°C| 38°C | 40°C
kkW)| O | 0 | 02|04 | 06| 08| 10| 08| 06| 04 | 02
k)| 0 | 0| o03|06|10|l06[03] 0| 0| 0] O
ksW) | 04 | 08| 10| 20| 08|04 0| O | 0| 0| O
kew)| o | o| o] o|o5|10[20][05| 0| 0| O
keW) | 02 | 05| 20|05 02| 0 [ 0| 0| 0| 0] O
keW)| O | 0| o |06 | 10|10[06| O | 0| 0| O

[ ntersection:

(D M, ace) (W) =minf m, ) (U),M, 5 (U],
(12) Mace (W) =min[ m; , (u),m; g (U)],

(3 M ack; @) W) =minimy ) (W).m ) (U],
(4 M ok, (a) ) =minmy ) (U),mg; (a) W]

Note: related to union and intersection, we may consider
an aggregation operation (*) as defined by:

M Ay () (U) = T (M () (L), () (U):
Complementation:
(1) my (- () =1- kf\(u),
(n2)
bkt jlk|=2
mkj(A)(u):¥ K]
where k?\(u) =, (x(u), for short.

From (n1) and (n2), we can get the following
complementation:

Tk Au),it jK|=2

weak fuzzy similarity relation as defined in the
following definition.
Definition 2: A wesk fuzzy smilarity relation is a
mapping, S:FU) FU)® [0,1] , such that for
X,Y,Z1 FQU),
1. Reflexivity: (X, X) =1,
2. Conditional symmetry:

if s(X,Y)f0 then s(Y,X)f0
3. Conditional transitivity:
If  s(X,Y)3 s(Y,X)f0 and
then s(X,Z)3 s(Z, X),
where U isan ordinary set of elementsand F(U) is

fuzzy power setsof U .
Definition 3: A fuzzy conditiona probability relation is
a mapping, R:FU) FU)® [0]], such that for

(Y, Z)? s(Z,Y)f0

fF Ok 1)K (), k(W) KhE TR (U),

XGY
R(X,Y)=P(X]¥)=P(r ® X) =%

& 1y min{my (u), my (u)}
é. ul U my (U)

My - m W) =1 flk AW,k U)K (W), ki (W) where R(X,Y) meansthedegree Y supports X or

1 IK|=m2,

where k;*(u) =1- M, ( (U), for short

3. Granularity of Knowledge

Granularity of knowledge is proposed with intent to
provide similarity classes of knowledge. In [4,9], fuzzy
conditional probability relation was introduced as a more
redlistic relation in providing similarity between two
elements or objects. Also in [56], two asymmetric
amilarity classes were introduced induced by fuzzy
conditiona probability relation. Corresponding to these
two asymmetric similarity classes, we also propose two
asymmetric sSimilarity classes of knowledge. The
concept of fuzzy conditional probability relations starts
from definition of an interesting mathematical relation,

thedegree Y issimilarto X and |Y|=3 ;,my(d)
isregarded as cardinality of Y .

By definitions, afuzzy conditiona probability relation
is consdered as a concrete example of weak fuzzy
similarity relations. In the definition of fuzzy conditional
probability relation, the conditional probability of fuzzy
sets (fuzzy events) is smply the relative cardinality
expresson by assuming that all the elements have
equally probability or uniform probability distribution.

We may consider fuzzy sets X and Y on U =E"
(Euclidean n-space) which is characterized by

membership function m (e,...,e,) and m (e,...,e,),
respectively with u=(e,...,e,) . Fuzzy conditional
probability relation of fuzzy setson E" is given by



8 g8 e Mnfmy (ey.....8). (r,....60)}
a elé N m, (ey,---.€,)

Gengadlly, fuzzy information table can be used to
represent fuzzy sets. We however need fuzzy
information (n+1)-dimensiona table for representing

fuzzy sets on E". Here, X and Y might be
assumed as knowledge-based fuzzy sets in which each
knowledge-based fuzzy set is regarded as fuzzy subset of

dements in U . Furthermore, degree of similarity
between two elements of knowledge, k. kT K, in
dedling a given fuzzy set A is provided by fuzzy
conditional probability relation as shown in the
following definition.

Sa(ki,kj) =R(ki (A),kj(A),
where k; (A),k; (AT K(A) are two knowledge-based
fuzzy setson U in dedling agiven fuzzy set A.
R is fuzzy conditiond probability relation. In this
case, S,(k,k;) means degree of k; is smilar to k;

in dealing a fuzzy label A in which S,(k,k;) and

Sa(k;, k) might have different values. For example,

given a fuzzy information table of Warm (W) on degree
Celgsius as shown in Table 2. Degree of similarity

between two elements knowledge, k, and Kk, for
instance, can be calculated by
0+05+1+06+0 _ 21
kg, kg) = ==,
Swlke ko) = =0 o T 1v06 32
0+05+1+06+0 _21
ke, Kg) = ==,
Swlkeka) == e w05 3
It can be easly verified that degree of similarity
between two elements of knowledge satisfies some

properties such as for A is a given fuzzy set on U
and k;,k;,k T K inwhich K issetof knowledge,
(r1) [Sa(ki.kj)=Sa(kj,k)=1"Al FU)U k =kj,

(r2)
[Sa(ki.kj)=LSa(kj.ki)&" Al FU)]U kj <ki,

(r3) [Sa(ki.kj)=Sa(kj.k)D," Al FU)IP ki ~kj,
(r4) [Sa(k,K;)aSa(k; k;)," Al F(U)IP ki <k;,
15) Su(k,.K)DU S,(K k,)7D,

(r6)

R(X,Y) =

may consider cardinality of knowledge-based fuzzy set
calculated by sum of membership function (see (e5) and

(c5)) as measure of tolerance. On the other hand, k; is
more tolerant than k; in (r4). Conditional symmetry
and conditional trangtivity are given in (r5) and (r6),
respectively.

Based on degree of similarity between two elements of
knowledge, we define two kinds of similarity classes of

agiven element of knowledge K, .

Definition 4. Let K be a non-empty universe of
knowledge, and S, be degree of similarity between
elements of knowledge in dealing a given fuzzy set A
on a set of dement U . For any element of knowledge

k1 K,S3(k)and rd(k) are defined as the set of
knowledge that supports k, and the set supported by
k. , respectively by:

sa(k) =fk1 Ksatkik)® a},

ral) ={k1 K|sa(k.k)? a},
where al [0]].
Sa(k.) can aso be interpreted as the set of knowledge
that issimilar to k; . Onthe other hand, ré(k;) canbe
consdered as the set of knowledge to which k. is
dmilar. Here, Si(k;) and r3(k;) are regarded as
two different semantic interpretation of similarity classes

in providing crisp ganularity of knowledge. It can be
proved that similarity class of knowledge satisfies some

properties such as, if k;<k; then Si(k) I Si(k),

if Al B then Si(ki S8(k) and if
ki ~k;," k.k,T K then Sa(k) =r & (k),
"kl K,"Al F(U). For two smilarity classes of

knowledge, SA(k;) and Sa(kj), the complement,
intersection and union are defined by:

- satk) =fi K‘k'l' (k)
Sa(k)C s;?\(kj):{ki K‘kT Sa(ki) and ki si‘\(kj)],

Sa(k)E si‘\(k,-):{ki K‘kT Sa(ki) or kI SA(K; )}

[Sa(ki, k)3 Sa(kj,ki)D,Sa(kj, k)2 Sak ;)] P SAEMKAry . Shegornplement, intersection and union can be

(r1) shows reflexive property in knowledge. In (r2), k
covers k; or k; contansin k;.Asshownin(r3), k;
and k ; are the same tolerant (persons) in which we

defined for two similarity classes, ré(k;) and ra(k;).
Obvioudly, the similarity classes of knowledge satisfy
Boolean lattice, for the subsets are crisp sets. By the
reflexivity, it follows that we can construct two crisp
coverings of the universd set of knowledge,



{Sﬁ(k)|kT K} and {r AT K}. One may use these
coverings of the universe to represent a generalization of
rough sets as proposed in [5,6]. We can also withdraw

a-cut or a-leve setfrom Definition 4 with intent
to provide a more generalization of similarity class. In
this case, each similarity class is regaded as a
fuzzy-granule as defined by

Ms, ) (K) = Sy(ki, K),
M, i) (K) =Sa(k k), " kT K,
where MM, (k) and - me, ) (9
SA(ki)

are grades of

membership of k in and ra(k)
respectively.

Smilarly, S,(k) and r (k) are regarded as fuzzy
granularity of knowledge. Also, it can be proved that

smilarity class of knowledge satisfies some properties
such as, if ki<k; then S,(k)I S,(k;),if Al B
then S,(K)I Sy(K) and if k ~k;," k,kT K
then Sa(k)=r (k) , " kT K," AT F(U) . For two
similarity classes of knowledge, S,(k;) and S,(k;),
the complement, intersection and union are defined by:

M s, (k) (K) =1- m s, k) (K),

M5, (k)G Sa (k;) (K) = MIn(Ms,, ) (K).s, () (K)),

Similarly, the complement, intersection and union can
be defined for two similarity classes, r p(kj) and

r a(kj) . For similarity classes of knowledge in terms of

fuzzy granularity are fuzzy sets, obvioudy some
properties of Boolean lattice are not satisfied such as
Law of contradiction and Law of excluded middle. Also,
two different fuzzy coverings of the universal set of
knowledge are given by {Sy(|kT K} and
f AIKT K} in which fuzzy granulaity is a
generaization of crisp granularity, implying that fuzzy
covering is a generalization of crisp covering. Crisp and
fuzzy granularity of knowledge play important role in
representing classes (groups) of elements of knowledge
(persons) who have similarities in dealing a given
problem (situation), which is represented by a given
fuzzy set.

Example 1. Given fuzzy information table of Warm (W)

in Teble 2. Two asymmetric similarity classes of K,
and K, are given by:

S (ka) ={ke ko kg, k),
S3°(ke) ={kz.k4.ke},

r 47 (<a) =fkp. kg ko),

r W (k) ={kq.ka kg, ks, e}
Two asymmetric similarity classes of k, and k; in
fuzzy granularity are given by:
|05 05 0.2 1.0 o.6u

Swlka) = Tk kz’ks’k4’k6%’
I04 08 04 0.7 0.2 100
wle) = Pk Tk kg kg ks kefv)
rW(k4)_'@%%1_oﬂu
ik ky k3 kg ketvj
|07 07 05 06 0.2 10U
rw(ke) ={~— 7= 77— 77—

4. Objectivity and Individuality Measure

Generdly, we may said that someone describes a
given object objectively, if and only if his description is
able to be accepted by al (persons). Actualy, when we
think of human being as persona being, then there are
not objective description instead al description are
subjective in the beginning. Therefore, standardization
of definition has been made in order to avoid
misunderstanding in communication such as quantitative
measure in physics (measure of length, weight, time,
energy, etc), regular shape of curves in geometry (line,
circle, triangle, rectangle, etc), and so on. However,
there is still a vast number of objects (anything) which
cannot be defined objectively and acceptably by all
(persons). Simply, on the assumption that the more a
given description is acceptable by others, the more
objective the description is, in this section, we define
objectivity measure in knowledge-based fuzzy sets. Firdt,
objectivity measure is defined in terms of crisp
granularity of knowledge as follows.

Definition 5: Let K be a non-empty universe of

knowledge, and ré(k;) is set of knowledge that is
j alk)
objectivity K, in dealing fuzzy label A in the degree of
dmilarity a by:

supported by K . is defined as degree of

rAG)|

sa —
J A(ki)_ |K|

where al [0]].
On the other hand, we may define individuality measure



as the opposite of objectivity measure by the following
definition.
Definition 6: Let K be a non-empty universe of
knowledge, and ré(k;) is set of knowledge that is
supported by k.. Ji(k) is defined as degree of
individuality k; in dealing fuzzy label A in the degree
of smilarity a by:
Ja k- rac)|+1
A( I)_ |K|
where al [0]].
Obvioudly, relation between j §(k) and J5(k) is
givenby:

11 2 ]J
@ j alk).IAk)1 %?? IV)
1

(b) j A(k)=1- JA(k)+| <[
(8 shows that minimum degrees of objectivity and
L By the reflexivity, it is obviously

i
proved that at least there is an element of knowledge,
k, itself, who is perfectly supported by k; . Even if all

elements of K are supported by Kk,

individuality are

it does not mean
that individuality of k, become extinct. Here, degree of
objectivity will be greater when there are more elements
of knowledge, which are supported by k; . On the other

hand, degree of individuality will be greater when k; is

more unique. Obvioudy, j 4(k) and Ji(k) are
equal to 1 if and only if there is only one element in set
of knowledge. In addition, degrees of objectivity and
individuality rely on discrete value as a result of using
crisp granularity. (b) shows a smple equation
representing relation between j 5(k) and J3(k). It
can be verified that j §(k) and J3(k) satisfy some
properties such as:

1 . o
0) jk(komk(ki):mu ki=k," kT K,

(i) | OA(k):l,J%(k)=ﬁ," ki K,

(iii) alﬁazUJAl(km 2 (K),dQ (K) £352 (K),

"kl K.
From the sat of K, we have a family of vaues

ﬁ AKT K}. To generdize all degrees of objectivity,

we may consider the following three definitions:
(Minimum) mj 3 (K) =minf & (k)k1 K},
(Maximum) Mj 3(K) = madj (k)T K},

(Average) *j 3 (K) = avgfj 3 (KIkT K}

In the same manner, from a family of vaue
{JaA(k)|kT K}, we generalize al degrees of
individuality by:

(Minimum) mJ 2 (K) = min{a2 (k)T K},
(Maximum) MJ2(K) = mai2 (k)T K},

(Average) *J3 (K) = avg{d 3 (WkT K]},
By definition we can obtain some conclusions such as:

mj 4(K) =10 * 4(K) =1 means that objectivity of
A is totaity in degree of similarity a . Oppositely,

Mj 2 (K) :|—i|0 5 3 (K) :ﬁ means that objectivity

of A is solitudein degree of smilarity a . Inthe$me

in terms of

manner, we dso have mJ2 A(K)= 10 =@ A(K)=

CRRANT

individuality of A. Related to the relation between
j alk) Jalk) in (o),
*j 2 (K) =1- *Jj\(K)+ﬁ.

Objectivity and individuality measure might be aso
defined in terms of fuzzy granularity of knowledge as
shown in the following definition.

Definition 7 Let K be a nonempty universe of

knowledge, and r p(k;) isfuzzy set of knowledge that
j alki) and J p(k;) are defined
as degree of objectivity and individuaity of k. ,
respectively, in dealing fuzzy label A as given by:
. A M k) ®
R e i
+a,a-m a)k)
JA(ki)z k A( i) KT
K]
Also, relation between j 5(kj) and J a(kj) is given
by:

@ | alki)Ialk)T [ﬁ,l],

and MJIA(K)=

and we  have

is supported by kK .




i - Y+
©) § alki)=1- JA(k.)+|K|-

Contrary to crisp granularity, in fuzzy granularity,
degrees of objectivity and individuality rely on
continuous value. It can be verified that j 5(k;) and
J a(kj) setisfy

. 1 . .
j A(ki):lJA(ki):MU ki =k," k1 K.

Similarly, from the set of K, we have two families of
values {j A(K|KT K} and {JA(0[KT K} . Also,
minimum, maximum and average functions can be used
to generalize degrees of objectivity and individuality in
the presence of fuzzy granularity of knowledge.

Related to Example 1, degrees of objectivity and
individuality of k, and kg in terms of crisp
granularity are given by:

. 05 6 05 3
:_l ‘] k :_!

J w(kg) 0 oW (ka) 5

. 05 7 05 4
k) =—, J kg)=—.

j w(ke) 0 W (ke) 5

Degrees of objectivity and individudlity of k, and kg
in terms of fuzzy granularity are given by:

) 55 33
ky)=—, Jwi(k,)=—",

J wi(ka) 10 w(Kg) 5
59 3.7

i w(kg) =—, Jyw(kg)=—.
J w(ke) 10 w (Kg) 5
5. Approximate Reasoning

Consider two persons, k; and k; for instance,

argue about their different conclusons of a given
premise. Let fuzzy label of A be a given premise and
fuzzy label of B be the conclusion. We may represent
relation between A and B by fuzzy production rules [9]
which connect problems with solutions, antecedents with
consequences, or premises with conclusions, as usually
used in representing knowledge in fuzzy expert system.
Generdly, fuzzy production rules have the form as
follows:
If A, then B,

where A B are fuzzy sets.

Related to the knowledge-based fuzzy sets, conclusions
of ki and kj; ae kj(B) and kj(B) in which
ki (B) * kj(B) . Our problem is to determine which one
has the right conclusion - k; or kj . Sometimes,

different views or understanding of the given premise
are the cause of different conclusons. Here, we may

summarize their relations into four possibilities:

1 ki (A =kj(A),ki(B)=kj(B), there is no problem
because both ki and k; ae exactly the same in
understanding the given premise and giving the
conclusion.

2. ki(A)=Kkj(A)ki(B)* kj(B), both k and k;j
have the same understanding of the given premise, but
they have different conclusions; that is the problem.

3. ki (A *Kj(A),ki(B)=k;j(B), because both k; and
kj have different understanding of the premise even

though they have the same conclusion, their conclusions
should be treated independently.

4. ki (A * kj(A),ki(B)* kj(B), with the same as point
3, their conclusions are independent so that their
different conclusons are able to be understood and
tolerated.

From the four possibilities, we have a problem in point 2.
Farly, k and k i have the same degree of correctness;
let say 0.5 in probability measure. By granularity of
knowledge as proposed in the previous section, degree
of correctness of approximate reasoning in fuzzy
production rule by certain knowledge (person) can be
approximately calculated as follows.

Definition 8 Let K be a non-empty universe of
knowledge, and Si(k),S§ (k) be crisp granularity of
knowledge of ki1 K in dedling fuzzy label A and fuzzy

label B, respectively. d, (A¥%5® B) is defined as
degree of correctness of approximate reasoning k in
representing conclusion of B as given premise of A by

SA(k) G SE (k)
da (AY#® B)=‘ A e ‘
Sa(k)

where al [0] and || be a cardindlity of set.

From the set of K, we have a family of vaues
{da (AV® B)kT K}. To generdize al degrees of
correctness, we may consider the following three
definitions:

Minimum: d"(A%4® B) =min{d, (A%4@ B)Ki K},
Maximum:d (A%4® B) = max{d, (A%s® B)ki K}
Average: d; (A%4® B) = avgld, (A%4® Bk K}

By definition we can obtain some properties such as:
if connection between premise A and conclusion B is
totally correct then Sa(k)1 S§(k) for dl ki K. It
also means that the similarity classes of knowledge in

dedling fuzzy label A is finer than the similarity classes
of knowledge in deding fuzzy labe B.




dM(A%® B)=10 d(A%® B)=1 ,
dN(A%A® B)A U d (A¥® B)4 . If

di (A%® B)=1 then we say that B is generd
concluson as given premise A, otherwise if

d; (A%4® B)l, we say that B is partial conclusion (in

smilarly

adegree dg‘(A%}f@ B) ) asgiven premise A. Likewise,

if da(A:’%}/E® B)=1 we sy tha B is generd
conclusion as given premise A in an eement of

knowledge ki K, otherwise if d, (A%%® B)al, we

say that B is partid concluson (in a degree
da(A%i}f;® B)) as given premise A in dement of
knowledge k.

Degree of correctness in Definition 5 may aso be
generdized and calculated by fuzzy granularity of
know ledge as defined by:

& g i Mintms, () (k). ) (V)]
where intersection is defined as minimum and
cardindity is provided by sum of membership function.

Smilaly, d™(A¥3® B),dM (A¥F:® B)

d*(A?/4BZ® B) may aso be defined to generdize al
degrees of correctness.

Also, it depends on the application in which for
example all of us agree that there is a causal relationship
between A and B. However the relationship might be
unclear in determining which one is premise and which
oneis conclusion.

For example, let K ={kj,k,,ks} be set of knowledge.
Interpretation of fuzzy labels A and B based on K is
arbitrarily given in the following figure.

da (A%$4® B) =

and

ki{A) ka(A) ka2(A)

AAVA

Figure1.?

ka(BYK1(B) ky( B)

Obvioudly, the figure shows that al elements of K
have ailmost the same interpretation of B, but they have
different interpretation of A. If we consider B as premise
and A as conclusion, a problem arises in determining
what interpretation of A should be used as conclusion in
the case of dmost the same interpretation of B. On the
other hand, if we consider A as premise and B as
concluson, no matter in the beginning they have
different interpretation of A as premise, finaly they will

have the same conclusion (in a leve set). Therefore,
we should consider A as premise and B as conclusion in
the given example. In this case, by the granularity of
knowledge, we are able to determine which one should
be a premise and which one should be a conclusion in
the causal relationship between A and B. Here, similarity
classes of knowledge in dealing premise should be finer
than similarity classes of knowledge in deding
concluson. Fuzzy production rule represents A as
premise and B as conclusion (A determines B, for short)
in element of knowledge ki1 K defined by:

(@ A%S®BU d,(BWi® A, (A%® B) =1, (A
strongly determines B)

K - A
'| b H e .'I_II “ || i

A4S Bl el

() (A weakly
determines B)

© A-¥®BU dy(A¥A® B)=d,(B¥W® A) =1
(A grongly equals B) _

d v B = §(A = B) = du(B = A) < 1, A
weakly equals B)

where K is set of knowledge. dj (A%)ﬁ@ B) and
d, (B¥#%® A) can be generdized and changed to

d(A%#® B) and d(B3#:® A), respectively. It is dso
necessary to consider and define some sets of fuzzy
production rules which are subsets of K as defined by

A®B . ..
0 K =iki K‘A%&@ Bg, (st of A srongly

determines B)

|.'_lr3 3 i
iy K =lhekA- ”}! (st of A weskly
determines B)

A« B + ..
i) K =}k K|A-%® Bg, (st of A strongly
determines B)

A srses 3 ) ) E X
iv) N e WA e B (oot of A wekly
equals B)
where they are satisfied:
BURBUVRURUREUURE =K whee
A®B 11t A< B A--ii B® A "y o
K, & K, & K, ad & ae dgoint

subsets of K. In order to generaize fuzzy production
rules, we need to cdculate cardindity of the sets of
fuzzy production rule, A determines B, by

e

e

1—5
| K

CiA — B) 0.75% | K |+05x | K
. PREN |
0.25 = | K |
Similarly, we have
B—A B 4 B e A
aie A= | K |+0% x| K |+0&85x=x| K

A i3



, Where || means cardinality of set. 1 is not
included in calculating cardinality of set of A determines
B with intent to deal A« B as a specid condition.
Simply, coefficients of cardinality of sets are given with
intervals of 0.25 because there are four sets of fuzzy
production rules that involve in the calcuation. We then
define fuzzy production rulesin K as follows.

(Ruel) A® BU C(A® B)=|K]|,

(Rue2) A« BU C(A® B)=C(B® A)=0,
(Rue3) A~ B+ [K|>CA—B)>C(B— A
(Ruled) A== B==C(A— B)=C(B—A)>0.

where |.|s is cardinality of set. It can be also said that
. A®B . A« B

A® BU K =K and A« BU K =K. It can
be proved that the fuzzy production rules satisfies
Armstrong's Axioms [1], such that for A,B,C are fuzzy
Reflexivity: Al BP A® B, ABI FU),
Augmentation: A® Bb (ACC)® B,ACI F(U),
Trangtivity: (A® B and B® C)b A® C.

6. Conclusions

We proposed knowledge-based representation of
fuzzy sets. Aggregation function was used to provide a
summary fuzzy set. Some basic concepts and operations
such as equality, containment, union, intersection and
complementation were defined in terms  of
knowledge-based fuzzy sets. Granularity of knowledge
was proposed in two frameworks, crisp granularity and
fuzzy granularity, in order to provide two asymmetric
similarity classes of knowledge in deding a fuzzy set
representing a problem. On the assumption that the more
a given description is acceptable by others, the more
objective the description is, we defined objectivity
measure in knowledge-based fuzzy sets. Contrary to
objectivity measure, we aso proposed individuaity
measure. Specia attention was given to approximate
reasoning of knowledge-based fuzzy sets in representing
fuzzy production rules. Inference rules, which are
similar to Armstrong's Axioms for the fuzzy production
rules, are both sound and complete.
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