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This paper discusses the relationship between
probability and fuzziness based on the process
of perception. As a generalization of crisp set,
fuzzy set is used to model fuzzy event as pro-
posed by Zadeh. Similarly, we may consider
rough set to represent rough event in terms
of probability measure. Special attention will
be given to conditional probability of fuzzy
event as well as conditional probability of rough
event. Their several combinations of formula-
tion and properties are examined. In the re-
lation to evidence theory, the probability of
rough event may be considered as a connect-
ing bridge between belief-plausibility measures
and the probability measures. Moreover, gen-
eralized fuzzy-rough event is introduced to gen-
eralize both fuzzy and rough events.

Keywords: Probability of Fuzzy Event, Probability
of Rough Event, Evidence Theory, Generalized Fuzzy-
Rough Event.

1. Introduction

Since the appearance of the first article on fuzzy sets
proposed by Zadeh in 1965, the relationship between
probability and fuzziness in representing uncertainty
has been an object of debate among many people. The
main problem is whether or not probability theory by
itself is sufficient for dealing with uncertainty. This
question has been discussed at length in many papers
such as written by Nguyen 1977 [13], Kosko 1990 [12],
Zadeh 1968 [20], 1995 [21], and so on.

In this paper, again we tried to simply understand
the relationship between probability and fuzziness us-

ing the process of perception performed by human be-
ing as discussed in [5]. In the process of perception,
subject (human, computer, robot, etc) tries to recog-
nize and describe a given object (anything such as hu-
man, plant, animal, event, condition, etc). To perform
perception successfully, subject needs adequate knowl-
edge. On the other hand, object needs a clear defi-
nition. However, human (as subject) does not know
what happen in the future and also has limited knowl-
edge. In other words, human is not omniscient being.
In this case, subject is in a non-deterministic situation
in performing a perception. On the other hand, mostly
objects (shape, feel, mentality, etc) cannot usually be
defined clearly. Therefore, the process of perception
turns into uncertainty.

To summarize the relation between subject and ob-
ject in the process of perception, there are four possible
situations as follows.

(a) If subject has sufficient knowledge and object has
clear definition, it comes to be a certainty.

(b) If subject has sufficient knowledge and object has
unclear definition, it comes to be fuzziness. In gen-
eral, fuzziness, called deterministic uncertainty,
may happen in the situation when one is subjec-
tively able to determine or describe a given ob-
ject, although somehow the object does not have
a certain or clear definition. For example, a man
describes a woman as a pretty woman. Obviously
definition of a pretty woman is unclear, uncertain
and subjective. The man however is convinced of
what he describes as a pretty woman.

(c) If subject does not have sufficient knowledge and
object has clear definition, it comes to be ran-
domness. Randomness is usually called non-
deterministic uncertainty because subject cannot



determine or describe a given object even though
the object has clear definition. Here, probability
exists for measuring a random experiment. For
example, in throwing a dice, even though there
are six definable and certain possibilities of out-
come, one however cannot assure the outcome of
dice. Still another example, because of his lim-
ited knowledge, for instance, one cannot assure to
choose a certain answer in a multiple choice prob-
lem in which there are four possible answers, but
only one answer is correct.

(d) If subject does not have sufficient knowledge and
object has unclear definition, it comes to be a prob-
ability of fuzzy event [20]. In this situation, both
probability and fuzziness are combined. For ex-
ample, how to predict the ill-defined event: “To-
morrow will be a warm day”. Talking about to-
morrow means talking about the future in which
subject cannot determine what happen in the fu-
ture. The situation should be dealt by probability.
However, warm is an ill-defined event (called fuzzy
event). Therefore, it comes to be a probability of
fuzzy event.

From these four situations, it is obviously seen that
probability and fuzziness work in different areas of un-
certainty and that probability theory by itself is not
sufficient for especially dealing with ill-defined event.
Instead, probability and fuzziness must be regarded as
complementary tools.

In probability, set theory is used to provide a lan-
guage for modeling and describing random experi-
ments. In (classical) set theory, subsets of the sample
space of an experiment are referred to as crisp events.
Fuzzy set theory, proposed by Zadeh in 1965, is con-
sidered as a generalization of (classical) set theory in
which fuzzy sets represent deterministic uncertainty by
a class or classes which do not possess sharply defined
boundaries [19]. Randomness of fuzzy events can be
quantified by probabilities, see [20]. Conditional prob-
ability as an important property in probability the-
ory for inference rule can be extended to conditional
probability of fuzzy event. In the situation of uni-
form probability distribution, conditional probability
of fuzzy event can be simplified to be what we call
fuzzy conditional probability relation as proposed in [3,
4] for dealing with similarity of two fuzzy labels (sets).

Similarly, rough set theory generalizes classical set
theory by studying sets with imprecise boundaries. A
rough set [15], characterized by a pair of lower and up-
per approximations, may be viewed as an approximate
representation of a given crisp set in terms of two sub-
sets derived from a partition on the universe [4,11, 15,

18]. By rough set theory, we propose a rough event rep-
resenting two approximate events, namely lower and
upper approximate events, in the presence of probabil-
ity theory providing probability of rough event. There-
fore, a rough event might be considered as approxima-
tion of a given crisp event. Moreover, probability of
a rough event gives semantic formulation of interval
probability. Formulation of interval probability is use-
ful in order to represent the worst and the best case in
decision making process. In this paper, special atten-
tion will be given to conditional probability of rough
events providing several combinations of formulation
and properties.

In addition, a generalized fuzzy rough set as pro-
posed in [10, 8] is an approximation of a given fuzzy
set on a given fuzzy covering. Since fuzzy sets general-
izes crisp sets and fuzzy covering generalizes crisp par-
tition, the generalized fuzzy rough set is considered as
the most general extension of fuzzy set and rough set as
well as rough fuzzy set and fuzzy rough set as proposed
in [1]. Thus, using the generalized fuzzy rough set,
a generalized fuzzy-rough event is proposed providing
probability of the generalized fuzzy-rough event. The
generalized fuzzy-rough event is represented in four ap-
proximate fuzzy events, namely lower minimum, lower
maximum, upper minimum and upper maximum fuzzy
events.

Finally, we show and discuss relation among belief-
plausibility measures (evidence theory), lower-upper
approximate probability (probability of rough events),
classical probability measures, probability of fuzzy
events and probability of generalized fuzzy-rough
events.

2. Probability of Fuzzy Events

Probability theory is based on the paradigm of a ran-
dom experiment; that is, an experiment whose out-
come cannot be predicted with certainty, before the
experiment is run. In other words, as discussed in the
previous section, probability is based on that subject
has no sufficient knowledge in certainly predicting (de-
termining) outcome of an experiment. In probability,
set theory is used to provide a language for modeling
and describing random experiments. The sample space
of a random experiment corresponds to universal set.
In (classical) set theory, subsets of the sample space of
an experiment are referred to be crisp events.

In order to represent an ill-defined event, crisp event
must be generalized to fuzzy event in which fuzzy set
is used to represent fuzzy event. Formally, probability
of fuzzy event is defined as the following [20]:



Definition 1 Let (U,F,P) be a probability space.
Then, a fuzzy event A is a fuzzy set A on U whose
membership function, pa : U — [0,1] is F-measurable.
The probability of fuzzy event A is defined by:

- continuous sample space:

PA) = [ madP = [ papode, ()
- discrete sample space:

P(A) = pa(u)p(u), (2)
U

where p(u) is the probability density function of P.

For example, given a sentence “John ate a few eggs
for breakfast” in which we do not know exactly how
many eggs John ate for breakfast. Instead, arbitrar-
ily given probability distribution function of “John
ate u € U egg(s) for breakfast” as shown in Table
1. “a few” is a fuzzy label that also means a fuzzy

Table 1: Probability Distribution of u

U 1 2 3 4 5 6
p(u) | 0.33 0.27 0.2 0.13 0.07 O

event as arbitrarily given by the following fuzzy set:
a few = {1/1,0.6/2,0.2/3}, where p,few(2) = 0.6.
By Definition 1, probability of “John ate a few eggs
for breakfast”, denoted by P(a few), is calculated as:

P(a few)=1x0.33+0.6 x 0.27 4+ 0.2 x 0.2 = 0.532.

There are several basic concepts relating to fuzzy sets.
For A and B are two fuzzy sets on U [19],

Equality: A = B <= pua(u) = pg(u), Yu,
Containment: A C B <= pa(u) < up(u), Vu,
Complement: B = —-A <= up(u) =1— pa(u), Vu,
Union: paup(u) = max(pa(u), ps(u)],

Intersection: panp(u) = min[pa(u), pp(u)],
Product: f1ap(u) = j1a(u)us (1),

Sum: pagp(u) = pa(u) + pp(u) — pa(u)us(u).

Obviously, it can be proved that probability of fuzzy
event satisfies some properties: for A and B are two
fuzzy sets on U,

(1) Ac B= P(A) < P(B),
(2) P(AUB) = P(A)+ P(B) — P(AN B),

(3) P(A® B) = P(A) + P(B) — P(AB),
(4) P(AU-A) <1,
(5) P(AN—A4) > 0.

(1), (2) and (3) show that probability of fuzzy event
satisfies monotonicity and additivity axioms of union
as well as sum operation, respectively. However, it
does not satisfy law of excluded middle and law of
non-contradiction as shown in (4) and (5).

We turn next to notion of conditional probability of
fuzzy events. Conditional probability of an event is the
probability of the event occurring given that another
event has already occurred. Specifically,

P(A|B) = P(AN B)/P(B),

where suppose B is an event such that P(B) # 0.

In discrete sample space, conditional probability of
fuzzy event might be defined as follows: for A and
B fuzzy sets on U,

P = Zamn a0 w0,

where ) pup(u)p(u) > 0. Some properties are: for A
and B fuzzy sets on U,

(1) Normalization: P(A|B)+ P(—A|B) > 1,

(2) Total Probability; If {Bx|k € N,,} are crisp, pair-
wise disjoint and exhaustive events, i.e., P(B; N
Bj) =0 for i # j and |J By = U, then:

P(A) = P(By)P(A|By),
k

(3) Bayes Theorem:
P(A|B) = [P(B|A) x P(A)l/P(B).

Also, the relationship between A and B in conditional
probability of fuzzy event can be represented into three
conditions:

(a) positive correlation:
II)D(AIB) > P(A) & P(B|A) > P(B) & P(An
B) > P(A) x P(B),

(b) negative correlation:
P(A|B) < P(A) & P(B|A) < P(B) & P(AnN
B) < P(A) x P(B),

(¢) independent correlation:
P(A|B) = P(A) & P(B|A) = P(B) & P(AnN
B) = P(A) x P(B).



In uniform distribution, probability density function,
p(u) = 1/|U|, is regarded as a constant variable.
Therefore, conditional probability of fuzzy event A
given B is defined simply as:

2y minfpa(w), pp(u)}

P(A|B) = S p ()

, YueU. (4)

In [3,4], we used this formula to calculate degree of
similarity relationship between two fuzzy labels (sets)
and called it fuzzy conditional probability relation.

3. Probability of Rough Events

Rough sets are another generalization of crisp sets by
studying sets with imprecise boundaries. A rough set,
characterized by a pair of lower and upper approxima-
tions, may be viewed as an approximate representation
of a given crisp set in terms of two subsets derived from
a partition on the universe [4, 11,15, 18]. The concept
of rough sets can be defined precisely as follows. Let U
denotes a finite and non-empty universe, and let R be
an equivalence relation on U. The equivalence relation
R induces a partition of the universe. The partition
is also referred to as the quotient set and is denoted
by U/R. Suppose [u]|r is the equivalence class in U/R
that contains u € U. A rough set approximation of a
subset A C U is a pair of lower and upper approxima-
tions. The lower approximation,

A={ueU|[urc A} =|J{lur € U/R|[ulr C A},

is the union of all equivalence classes in U/R that are
contained in A. The upper approximation,

A = {ueU|[lurnA#0},
— |\ J{lulr € U/R| [ulgn A # 0},

is the union of all equivalence classes in U/ R that over-
lap with A. Similarly, by rough set, a rough event
can be described into two approximate events, namely
Rough event
might be considered as approximation and generaliza-
tion of a given crisp event. Probability of rough event
is then defined as follows.

lower and upper approximate events.

Definition 2 Let (U,F,P) be a probability space.
Then, a rough event of A = [A, A] € F? is a pair of
lower and upper approximation of A C U. The proba-
bility of rough event A is defined by an interval prob-
ability [P(A), P(A)], where P(A) and P(A) are lower
and upper probabilities, respectively.

- lower probability:

P(4) =

2.

{uel|[ulrRCA}

-y

U{[ulr€U/R|[ulrCA}

p(u)
P([u]Rr),

- upper probability:
P(4) =

2.

{uel|lulrnAZD}

- s

U{[u]r€U/R|[u] RNAF#D}

p(u),

P([ulr),  (8)

where p(u) is probability density function of P.

The definition shows that the probability of a rough
event gives semantic formulation of interval probabil-
ity. By combining with other set-theoretic operators
such as =, U and N, we have the following results:

P(4) < P(4) < P(A),

[P(4) < ( P(A P(B)],

(P10) P(A) = P(4), P(4) =
P(AU=A) <1, P(AU=A) > 1
P(AN=A) =0, P(AN=4) >0

(P11)
(P12)

Conditional probability of rough events might be
considered in the following four combinations of for-
mulation: For A, B C U, conditional probability of A
given B is defined by,

W PaB) = TSRS @) paip) = ZEE0)
@ PAB) = Tz @) B = T

Some relations are given by:
P(ANB) < P(ANB)= P(AB) < P(
P(ANB)< P(ANB) = P(AB) < P(Z\F)

Similarly, they also satisfy some properties:

N
=



(1) Normalization:

(i) P(A|B) + P(=A|B) < 1,
(i)) P(A|B) + P(=A[B) < 1,
(iii) P(A|B) + P(=A|B) > 1,
(iv) P(A|B) + P(=A|B) > 1.

(2) Total Probability; If {By|k € N,,} are crisp, pair-
wise disjoint and exhaustive events, i.e., P(B; N
Bj) =0 for i # j and |J By = U, then:

P(A|By),

Note: {Bg|k € N,,} might be different from U/R.

(3) Bayes Theorem:

(i) Pap) - CESEE,
(i) piam) - PP S,
i) P - EEE,
(o) Paam) - PO,

Other considerable formulations of conditional proba-
bility of rough event are the following: For A, B C U,
conditional probability of A given B can be also de-
fined by,

0 AAB) = TEZE @ pals) = TESE
@ Piam) = L5 @ pa) = S

Also some relations concerning the above formulations
are given by:

- Py(AIB) < Py(A[B) < P3(A[B),

Py(A|B) < P5(A[B),
- Py(A|B) < Py(A|B),
- P(ANB)

— P(AN B) = Pi(A|B) = P(A|B).

They satisfy some properties of conditional probabil-
ity:

(1) Normalization:

(i) PL(A|B) + P1(-A|B) < 1,
(i) P2(A[B) + P2(-A|B) < 1,
(1ii) P3(A|B) 4+ P3(—A|B) > 1,

(iv) Py(A|B) + Pi(—A|B) > 1.

(2) Total Probability; If {Bx|k € N,,} are crisp, pair-
wise disjoint and exhaustive events, i.e., P(B; N

Bj) =0 for i # j and |J By = U, then:

(i) P(A) =Y P(Bp)Pi(A|By),

k

(i) P(A) > > P(Bi)Pa(A|By),
k

(iii) P(A) <Y P(By)P3(A|By),

k

(iv) P(A) <) P(By)Pi(A|By).
k

Note: {Bg|k € N,,} might be different from U/R.
(3) Bayes Theorem:

P (B[A)P(4)

(i) P1(A|B) = o
(i) Py(A|B) = %’
(iii) P3y(A|B) = %5@7
(iv) Py(A|B) = %ﬁglj@

4. Probability of Generalized Fuzzy-
Rough Events

A generalized fuzzy rough set is an approximation of a
given fuzzy set on a given fuzzy covering. Since fuzzy
sets generalize crisp sets and covering generalizes par-
tition, fuzzy covering is regarded as the most general
approximation space. Fuzzy covering might be consid-
ered as a case of fuzzy granularity in which similarity
classes as a basis of constructing the covering are re-
garded as fuzzy sets. Alternatively, a fuzzy covering
might be constructed and defined as follows[9)].

Definition 3 Let U = {uy,...,un} be an universe. A
fuzzy covering of U is a family of fuzzy subsets or fuzzy



classes of C, denoted by C = {C1,Cy,...,Cy,}, which
satisfies

> ne,(w) > 1, Yk €N, (9)

0< ZNCi(uk‘) <n, Vie Ny, (10)

k=1

0,1].

where m is a positive integer and pc;(ug) €

Given a fuzzy set A on fuzzy covering as defined in
Definition 3, a generalized fuzzy rough set A is defined
in the following definition.

Definition 4 Let U be a non-empty universe, C' =
{C1,Cs,...,Cy} be a fuzzy covering and A be a given
fuzzy set on U. A,., Ay, Am and Ay are defined
as minimum lower, mazimum lower, minimum upper
and mazximum upper approrimate fuzzy sets of A, re-
spectively, as follows.

{y(i,z)} (11)
{y(i,2)} (12)

pu— ' f
HA,, () {Z\uc (y)>0} {zeU\uc (Z >0}

_ sup min
KAy, (y) {iluc, (y)>0} {z€U|uc, (2)>0}

pz, (y) = Wc”&f)>o}r?ea§{¢(z ,2)} (13)
rz,, (y) = sup  max{y(i,2)}, (14)

{iluc, (y)>0} 2€U

where (i, z) = min(pe, (2), pa(z)), for short.

Therefore, a given fuzzy set A is approximated by four
approximate fuzzy sets derived from a fuzzy covering
defined on the universal set involved. Relationship
among these approximations can be represented by:

A, CAy CAyM, A, C Ay C Ay, Ay C A

Iterative is applied for almost all approximate fuzzy
sets except for A,, as follows.

DA

LImxo

Ap2(A) 2

Ay C(Am)y € C Aprs,

where A,,,, Am« and Ay, are the lowest approxima-
tion of A,,, the uppermost approximation of A,, and
the uppermost approximation of Ay, respectively. By
the generalized fuzzy rough set, a given fuzzy event
can be approximated into four fuzzy events called gen-
eralized fuzzy-rough event. Probability of generalized
fuzzy-rough event is then defined as follows.

Definition 5 Let (U,F,P) be a probability space.
Then, a generalized fuzzy-rough event of A =
(A, Anss A, Ayl € F* are fuzzy approzimate events

of A, where A is a given fuzzy event on U. The prob-
ability of generalized fuzzy-rough event A is defined by

a quadruplet [P(4,,), P(Ay), P(Am), P(Ay,)] as fol-
lows.
P(4,) = Y pa,(wp(u) (15)
U
P(Ay) = Y ha, (wp(u) (16)
U
P(An) = Y pg, (w)p(u) (17)
U
(18)

P(Ay) = ) uz,, (wp(u)
U

where p(u) is probability distribution function of ele-
ment u € U.

By combining with other set-theoretic operators such
as =, U and N, we have the following properties:

(PG1) P(4,,) < P(Ay) < P(Ay),
P(Ay) < P(A), P(4,,) < P(4,) < P(Au),

(
A C B & [P(4,) < P(B,),P(Ay) <

(PG2) .
P(By), P(Am) < P(Bm), P(Ay) < P(Bu)),
(PG3) P(Uy) <1, P(U,) <1, P®,) =P, =0,
(PG4) P(ANB,) < P(A, N B,), P(ANB,) <
P(Z)\ M E)\),
(PG5) P(AUB,) > P(A,)+ P(B,) — P(ANB,),
(PGG) P(AUB)\) < P(A)\) —I-P(B)\) —P(AHBA),
(PG7) P(4,,) = P((4,,), ) = =2 P(4,.),
P(Ay) = P( AM)M)a
(PG8) P(A,) < P((A))) < - < P(Ay),
(PGY) P(A,U=-A,) <1,
(PG10) P(A\N=A4,) >0, P(AxN-A4y) >0,

where A € {m, M}, for short.

5. Belief and Plausibility Measures

Belief and plausibility measures are mutually dual
functions in evidence theory originally introduced by
Glenn Shafer in 1976 [16]. This work was motivated
and related to lower and upper probability by Demp-
ster in 1967 [2] in which these all types of measures
are subsumed into the concept of fuzzy measure pro-
posed by Sugeno in 1977 [17]. Belief-plausibility mea-
sures can be represented by a single function, called
basic probability assignment, which provides degrees



of evidence to certain specific subsets of the universal
set. In the special case when subsets of the univer-
sal set are disjoint and every subset represent elemen-
tary set of indiscernible space, we may consider belief
measures and plausibility measures as lower (approxi-
mate) probability and upper (approximate) probabil-
ity in terms of probability of rough events as proposed
in Section 3 [5,6]. Here, lower and upper approxi-
mate probabilities are regarded as special case of belief
and plausibility measures, respectively, as probability
of elementary set is a special case of basic probabil-
ity assignment. In other words, belief and plausibility
measures are based on crisp-granularity in terms of
a covering. However, lower and upper approximate
probabilities are defined on crisp-granularity in terms
of disjoint partition. Moreover, when every elementary
set has only one element of set, every probability of el-
ementary set will be equal to probability of an element
called probability distribution function as usually used
in representing probability measures. Obviously, lower
and upper approximate probability of a given rough
event will be reduced into a single value of probabil-
ity. Belief and plausibility measures as well as lower
and upper approximate probability are considered as
generalization of probability measures in the presence
of crisp granularity of sample space. Still there is an-
other generalization in the case that membership de-
gree of every element of sample space in representing
an event might be regarded from 0 to 1. It provides
probability measures of fuzzy events as proposed by
Zadeh in 1968 [20]. It may then provide a more gen-
eralized probability measures in the presence of fuzzy-
granularity of sample space and by given a fuzzy event
called probability measures of generalized fuzzy-rough
events as proposed in previous section [6, 7]. Belief and
plausibility measures can be represented by a single
function called basic probability assignment as defined
by the following [11]:

Definition 6 Let U be a sample space and P(U) be
power set of U,

m: PU) — [0,1] (19)

such that m(0) = 0 and 3 peprym(E) = 1, where
m(E) expresses the degree of evidence supporting the
claim that a specific element of U belongs to the set
but not to any special subset of E.

Note that:
1. It is not required that m(U) = 1.

2. It is not required that Ey C FEy = m(E;) <

3. There is no relationship between m(E) and
m(—E).

Every E € P(U) is called a focal element iff m(E) > 0.
Focal elements may overlap one to each other. Belief
and Plausibility measures are then defined by: For A €
PU),

Bel(A) = > m(E) (20)
ECA

Pl(A) = Y  m(E) (21)
ENA#)

It can be proved that for all A € (P)(U), Bel(A) <
PI(A). Also, it can be verified that belief and plau-
sibility measures are dual functions, i.e., PI(A) =
1 — Bel(—A). Similarly, Bel(A) =1 — Pl(-A).

Since belief and plausibility measures are defined as
above, some properties of lower and upper approxi-
mate probability are not satisfied such as for instance
iterative properties of lower and upper approximate
probabilities in (P9) and (P10). Let consider,

PI71(A) = U
EeP(U),ENA#£)

Bel™'(4) = U &
EeP(U),ECA

FE and

where PI(A) and PI=!(A) correspond to P(A) and A
, respectively. Similarly, Bel(A) and Bel=!(A) cor-
respond to P(A) and A, respectively. Hence, prop-
erty of P(A) = P(A) in (P10) can be represented as
PI(A) = PI(PI7*(A)) by using expression of plausibil-
ity measures. It can be easily proved that the property
is not satisfied instead PI(A) < PI(PI7'(A)). Also,
P(A) > Pl(Bel~'(A)) ofP(A) > P((4)), in property
(P9) cannot be verified.

When every elementary set has only one element,
the probability of elementary set is equal to proba-
bility of the element represented by a function called
probability distribution function, p : U — [0, 1], which
is defined on set U as usually used in probability mea-
sures. Here, lower and upper approximate probabil-
ities fuse into a single value of probability in which
probability satisfies additivity ariom as an intersection
area between supperadditive property (P7) of lower ap-
proximate probability and subadditive property (P8) of
upper approximate probability.

In fact, belief functions, as well as possibility mea-
sures, can be rigorously formulated in terms of a pow-
erful ingredient, random set theory, see [14], in which
the above mentioned non-additive set-functions are
related to capacity functionals of random sets, the



counter-parts of distribution functions of random vec-
tors. Specifically, the so-call “basic probability assign-
ment m” in the Definition 6 is nothing else than the
probability density function of a random set and its as-
sociate belief measure is the corresponding probability
distribution of a random set.

6. Conclusion

The relationship between probability and fuzziness was
simply discussed based on the process of perception.
Probability and fuzziness work in different areas of un-
certainty; hence probability theory by itself is not suffi-
cient for dealing with uncertainty in the real-world ap-
plication. Instead, probability and fuzziness must be
regarded as a complementary tool providing probabil-
ity of fuzzy event in which fuzzy event was represented
by fuzzy set. Fuzzy event was considered as a gener-
alization of crisp event as well as fuzzy set generalizes
crisp set. Similarly, rough set, as another generaliza-
tion of crisp set, was used to represent rough event.
Probability of rough event was proposed. Conditional
probability of fuzzy event as well as rough event and
their some properties were examined. A more general-
ized fuzzy rough set is proposed as an approximation
of a given fuzzy set on a given fuzzy covering. There-
fore, by using the generalized fuzzy rough set, a gen-
eralized fuzzy-rough event was considered as the most
generalization of fuzzy and rough event in terms of
their definition by using probability distribution func-
tion (p(u)) (see Eq. (5) and (7)). Probability of the
generalized fuzzy-rough event was proposed along with
its properties.

We may then summarize their relation by the fol-
lowing figure.

Belief and Plausibility Measures

Probability of Rough Events

Probability Measure

Probability of Fuzzy Events

Probability of Generalized
Fuzzy-Rough Events

Figure 1: Generalization based on Crisp-Granularity
and Membership Function
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